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We investigate the probabilistic properties of recurrence times for the simplest
form of aperiodic deterministic dynamics, quasi-periodic motion. Previous results
using number theory techniques predict two fundamental recurrence times for
uniform quasi-periodic motion on a two-dimensional torus, while no analogous
analytic result seems to exist for higher dimensional tori. The two-dimensional
uniform case is reanalyzed from a more geometric point of view and new,
workable expressions are derived that enable us fully to understand and predict
the recurrence phenomenon and to analyze its parameter dependence. Emphasis
is placed on the statistical properties and, in particular, on the variability of
recurrence times around their mean, in relation to local Farey tree structure.
Higher-dimensional tori are considered, and seen to also display a high
variability in their finite-time recurrence behavior. The results are finally
extended to the non-uniform quasi-periodic case.

KEY WORDS: Recurrence times; quasi-periodic motion; circle map; Farey
tree; Diophantine approximation; Denjoy's theorem.

1. INTRODUCTION

There is an ongoing interest in the properties of recurrence times of deter-
ministic dynamical systems, (1�4) stimulated both by the historical impor-
tance of the early contributions by Poincare� and by the relevance of the
subject in the foundations of statistical mechanics.(5)
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Recently, the statistics of recurrence times has been taken up as a tool
toward the improvement of prediction techniques.(6�8) Indeed, consider a
dynamical system, and let the corresponding (full or reduced) phase space
be partitioned into cells. The investigation of the dynamics of transitions
between the cells of this partition provides then one with considerable
insight on the underlying fine scale dynamics and, in particular, its degree
of predictability, since it gives information on the time delay between two
successive passages of the trajectory in the ``state'' corresponding to the
particular phase space cell considered.

Ordinarily, investigations on recurrence dynamics in the physical
literature are limited to the evaluation of mean recurrence times. One may
argue that, in many instances, this type of information is not sufficiently
representative. On the one side, fluctuations around the mean are likely to
be comparable to the mean itself since there is here no obvious argument
analogous to the one penalizing the fluctuations of intensive thermo-
dynamic quantities. And on the other side, since the dynamics is generally
highly non-uniform as one moves across phase space, one expects to
encounter a pronounced variability along the invariant manifold on which
the trajectories are evolving. The investigation of the dynamical and
statistical properties of recurrence times in quasi-periodic motion account-
ing for these two aspects is one of the principal objective of this work. The
role of the parameters of the underlying system and of the size and shape
of the phase space cell chosen will also be assessed. Numerical investiga-
tions will also be carried out and will help shedding light into the high
complexity of the recurrence phenomenon.

Recurrence times in quasi-periodic motion have also attracted con-
siderable attention in the mathematical literature. The main result in this
area(9�11) is that the set of integers n such that [n:]=n: mod 1 is limited
to an interval [0, a), a<1, displays gaps taking 2 or 3 different values, the
third one being the sum of the first two. Loho� fer and Mayer(12) extended
this result to more general intervals and gave expressions for these gaps,
interpreted as the discrete recurrence times of an underlying two-dimen-
sional quasiperiodic motion.

The generalization of these results to n-dimensional (n>2) quasi-peri-
odic motion seems to be largely open. Numerical evidence(13) indicates the
persistence of n fundamental gaps or recurrence times, from which all other
observed recurrence times (in finite number) are obtained as integer-valued
combinations. An expression for the mean recurrence time in n-dimensional
harmonic motion was also derived by Hemmer et al.(2) using a rather
involved method.

In the present paper these results are first reformulated and rederived
in a simple manner combining geometric and number theoretic arguments,
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more suitable for our further analysis of the probabilistic properties and the
cell size and parameter dependencies of the recurrence times to which the
bulk of the paper is devoted.

We first consider in Section 2 the case of recurrence in uniform quasi-
periodic motion. As well known, in the presence of two incommensurate
frequencies this motion reduces on a Poincare� surface of section to the
twist map

xn+1=F:(xn)=xn+: mod 1 (1)

where : is irrational. This mapping may also be seen as the simplest example
of an interval exchange transformation, in which the two intervals [0, 1&:]
and ]1&:, 1] are exchanged under F: . Ergodic properties of the corre-
sponding interval exchange maps have been addressed by Kerckhoff (14) and
Rauzy.(15) Section 2.1 is devoted to the derivation of the results of Loho� fer
and Mayer mentioned above using an alternative, more physically-oriented
method. In Sections 2.2 and 2.3 the dependence of the recurrence times on,
respectively, the cell size and the intrinsic parameters is analysed by exten-
sive numerical investigation and their high variability is brought out. The
extension to high-dimensional tori is carried out in Section 2.4.

In Section 3 recurrence in non-uniform quasi-periodic motion is
considered. The problem is first formulated in Section 3.1 for the two-
parameter generalization of (1),

xn+1=F:, g(xn)=xn+:+ g(xn) mod 1 (2)

where g(x) is a nonlinear function of period 1. Using earlier results by
Mayer(4) we show explicitly how the problem can be cast into a problem
involving uniform, but phase space cell-depending dynamics for which the
results of Section 2 may be applied. We subsequently illustrate in Sec-
tion 3.2 the effects of non-uniformity in the behavior of recurrence times on
the particular model of the sine circle map. The main conclusions are
drawn in Section 4.

2. UNIFORM QUASI-PERIODIC MOTION

2.1. Two-Dimensional Uniform Quasi-Periodic Motion

Consider a torus T 2, that is, the phase space [0, 2?] V [0, 2?]. A two-
dimensional uniform quasi-periodic motion on this torus is represented by
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two angular variables % and , whose evolution is parameterized by the time t:

%t&%0=|1 t mod 2? (3)

,t&,0=|2 t mod 2? (4)

where |1 �|2 � Q and consider, without loss of generality, |1=||1 | and
|2=||2 |. We are interested in determining the recurrence properties of
such a dynamical system as a function of the specific partition chosen on
the torus, the values of |1 and |2 , and the size of the phase space cell. As
this kind of uniform dynamics is also ergodic on the torus, the recurrence
properties are uniform as well, implying that one may be limited to a single
cell placed anywhere on the torus. Hereafter we choose, without loss of
generality as will be shown below, a square cell C of side 2=.

Hemmer et al.(2) derived an expression for the mean recurrence time
(T ) in the case of a linear chain of harmonically coupled masses. An early
more general expression due to Smoluchowski(5) and applicable to any
ergodic continuous time dynamical system is also available:

(T ) {={
1&P(C )

P(C )&P(C, 0; C, {)
(5)

where { is the sampling period of the dynamics, P(C ) is the probability to
be in cell C, and P(C, 0; C, {) is the joint probability to be initially in cell
C and to still be in it after a time {. In the two-dimensional uniform case,
the invariant density is \(%, ,)=1�(2?)2 and

P(C )=(2=�2?)2 (6)

P(C, 0; C, {)=|
C

d%$ d,$ |
C

d% d, $(%$&(%+|1{)) $(,$&(,+|2 {)) \(%, ,)

(7)

=\ 1
2?+

2

(2=&|1 {)(2=&|2{) (2=>|1{, |2{) (8)

One thus gets from (5)�(7) in the continuous time limit { � 0 and =<<1

(T ) &
(2?)2

2=(|1+|2)
(9)

In what follows we shall also be interested in more detailed properties of
recurrence times, such as their variability around this mean value.
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The general approach to the recurrence problem amounts to the
search of pairs of positive integers k and l satisfying the following set of
equations

|1 tp=2?k+$1
(10)

|2 tp=2?l+$2

where tp denotes the passage time of the trajectory in the cell and $1 , $2 are
real numbers in [&=, =]. Eliminating tp , one is thus led to study the solu-
tions of the following Diophantine inequality

|k&l:|�=~ (11)

where k, l # N0 , :=|1�|2 � Q and =~ =(=�2?)(1+(|1 �|2)). A recurrence
time T is uniquely determined by a value 2k (2l ) separating two successive
k (l ) solutions of the Diophantine inequality, multiplied by the period
associated to the frequency |1 (|2) plus a small correction associated to
the finite size of the cell

T=2k
2?
|1

+O(=) (12)

=2l
2?
|2

+O(=) (13)

In the following, a particular recurrence time will be identified to the
corresponding value 2k or 2l.

Now, finding the 2l 's (and thus the 2k's too) from Eq. (11) is equiv-
alent to solving the problem of the existence of gaps of an ordered set of
integers in an exchange transformation formulated in the Introduction, the
relevant interval being here

[0, =~ ] _ [1&=~ , 1] (14)

In the remaining of this Subsection we shall outline an alternative deriva-
tion of the results of Loho� fer and Mayer(12) on the existence of 2 or 3 dis-
crete values of these gaps (recurrence times) which is more illustrative and
suitable for the analysis of Subsections 2.2 to 2.4. As is well known, for
given =~ , relation (11) admits an infinity of solutions.(16) Let (kn , ln) be
a particular pair of such solutions where the index n denotes the order
(in time) in which they are realized. Recurrence of the trajectory in the
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cell after this n th passage is associated, then, with the pair of integers
(2kn , 2ln) such that

2kn=kn+1&kn
(15)

2ln=ln+1&ln

The main problem is thus to determine the full ordered set of ratios (for
reasons that will be clear further) of different values of these integers, noted
in the sequel by the superscript ``&''

R={\2k� j

2l� j += j=1, 2(, 3) (16)

According to (11), the differences

dn=kn&ln: (17)

are bound by the inequality

&=~ �dn�=~ (18)

Setting

d� 1=2k� 1&2l� 1: (19)

and noticing that Eq. (18) holds for n+1 as well as for n, one has (choosing
n such that kn+1=kn+2k� 1 , ln+1=ln+2l� 1)

&=~ �dn+d� 1�=~ (20)

Since recurrence can occur anywhere in the cell, d� 1 can in principle take
any value between &2=~ and 2=~ . Relation (20) imposes therefore two dif-
ferent types of constraints for dn depending on the sign of d� 1 :

&=~ &d� 1�dn�=~ if d� 1<0 (21)

&=~ �dn�=~ &d� 1 if d� 1>0 (22)

In other words, depending on the sign of d� 1 , dn is bound to be in the set

S (1)
& =(&=~ &d� 1 , =~ ) (23)

or

S (1)
+ =(&=~ , =~ &d� 1) (24)
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Fig. 1. A possible configuration for the sets S (1)
\ .

Figure 1 illustrates this for a particular choice of d� 1 . The point is that sets
S (1)

\ are contained within the set S=(&=~ , =~ ): S (1)
\ /S, S (1)

\ & S{S. As a
result the phase space points belonging to the complement S�S (1)

\ of S (1)
\

within S cannot be connected by the recurrence time (2k� 1 , 2l� 1). There has
to be, therefore, a larger pair of integers (2k� 2 , 2l� 2) determining recurrence
in this latter set.

Let d� 2=2k� 2&2l� 2:. Proceeding as before, we are led to define the sets

S (2)
& =(&=~ &d� 2 , =~ ) (d� 2<0) (25)

S (2)
+ =(&=~ , =~ &d� 2) (d� 2>0) (26)

containing dn , being understood that the latter is now supposed not to be
in S (1)

\ , Eqs. (21)�(22). Figure 2 depicts two possible configurations of S (2)

relative to S (1), corresponding to particular choices of signs and values of
d� 1 and d� 2 . In (a) S (1)

+ _ S (2)
& =S, meaning that recurrence occurs entirely

through two discrete times. In (b) (S (1)
+ _ S (2)

& ) & S{S. The phase space
points in S�(S (1)

+ _ S (2)
& ) recur therefore with a different, longer recurrence

time associated with a new larger set of integers (2k� 3 , 2l� 3). The process can
be repeated until the sets [S (i)

\] cover fully the original set S.
A specification of the full set of distinct pairs (2k� i , 2l� i) determining

entirely the recurrence properties can be achieved by using the continued
fraction expansion of the real number : and the Farey tree. Indeed, we
have seen (Eq. (19)) that the differences [d� i] involving the recurrence times
[2k� i , 2l� i] satisfy the inequality |d� i |�2=~ . Let us rewrite this result as

}2k� i

2l� i
&: }� 2=~

2l� i
(27)
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Fig. 2. Possible configurations for S (1)
+ and S (2)

& : (a) recurrence occurs entirely through two
discrete times, (b) more than two times are involved in recurrence.

if :=|1 �|2<1, or

} 2l� i
2k� i

&: }� 2=~
2k� i

(28)

if : is defined as :=|2 �|1<1. This form is reminiscent of the classical
problem of approximating an irrational : by rational numbers, written as
ratios of two integers. Now, a rational number p�q, p<q, can be written as
a finite regular continued fraction(16) [a1 , a2 , a3 ,..., an], whereas for an
irrational number :, an infinite sequence [a1 , a2 , a3 ,..., an ,...] is needed.
Any such sequence truncated to a finite order produces a rational number
which is referred to as an approximant to :. A well-known result of number
theory is that these approximants are the best rational approximations to
:, in the sense that any better rational approximation written as the ratio
of two integers will display a larger denominator. Furthermore, the follow-
ing properties are worth noting for later use: if p~ n �q~ n and p~ n&1 �q~ n&1 are,
respectively, the nth and (n&1)th order approximant of :, then(16)

p~ n

q~ n
&

p~ n&1

q~ n&1

=
(&1)n&1

q~ nq~ n&1

(29)

} p~ n

q~ n
&: }< 1

q~ n q~ n+1

<
1

an+1q~ 2
n

�
1

q~ 2
n

ww�
n � �

0 (30)
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The first relation implies, in particular, that while the absolute distances
from : decrease monotonically as higher order approximants are taken,
their signs are alternating. The following lemma(17) is also of great interest
for further use:

Let : be a positive number, and let p~ n �q~ n be the n th approximant
(n�1) of the regular continued fraction expansion of : in canonical form.
Let p and q be positive integers such that ( p�q){( p~ n �q~ n) with 0<q�q~ n .
Then

| p&q:|�| p~ n&1&q~ n&1:|>| p~ n&q~ n:| (31)

As well-known, the Farey tree(16) is a mathematical construction that per-
mits a natural, exhaustive classification of the rationals in the interval
[0, 1]. A ``branch'' of the Farey tree consists of a ``mother to daughter''
ordered sequence [ pn �qn]�

1 , such that pn<pn+1 , qn<qn+1 \n>0. Each
branch is unique and converges to an irrational number.

It may be seen that the successive approximants [ p~ n �q~ n] of : are those
members of the Farey branch [ pn�qn] that are closest to : for each suc-
cessive part of the branch at a positive or negative distance ( pn�qn)&:. In
particular, their set forms a subset of [ pn �qn]. Furthermore, by virtue of
the lemma summarized in Eq. (31), all members pn �qn of the Farey branch
situated between two successive approximants ( p~ j&1�q~ j&1) and ( p~ j �q~ j) are
at an absolute distance (in the sense of | pn&qn :| ) greater than the one of
the lowest order approximant ( p~ j&1 �q~ j&1). Let us remark for further use
that the coefficients a j of the continued fraction expansion [aj] represent
the number of non-approximant members, plus one, of the branch between
the ( j&1)th and the j th approximant. Those non-approximant members,
which are sometimes called the ``Nebenbru� che,'' may be expressed as linear
combinations of two successive approximants, as follows:(9) if p~ k �q~ k is the
kth approximant of :, then the Nebenbru� che are

p~ k&1+&p~ k

q~ k&1+&q~ k
(&=1, 2,..., ak&1) (32)

The results summarized so far in this section are strong enough to
identify the elements of the recurrence set R, Eq. (16), and to explain in a
simple and quite geometrical way the behavior of the recurrence times as
observed when the parameters |1 , |2 , and = are varied.

The first point to be made is that the lemma, in conjunction with the
fact that the approximants of the continued fraction are the best rational
approximations to :, entails that 2k� 1 �2l� 1 must be the first member of
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[ p~ n �q~ n] satisfying |d� |�2=~ . All other elements of R must belong to [ pn �qn]�
( p1 �q1 ,..., 2k� 1 �2l� 1) because even if they are not necessarily approximants
and thus best rational approximations to :, they may have an absolute dis-
tance | pn&qn:| less than or equal to 2=~ and there are no other fractions
(not belonging to the branch) involved: the region of the tree delimited on
the right side and on the left side by the members of the branch contains
no fractions not belonging to the branch.

One wants now to show that for any set of values for the parameter
set |1 , |2 , =, the number of elements contained in R is only two or three
(in which case the third element is the Farey-sum of the first two ones).
Since (2k� 1 �2l� 1) is an approximant, say the i th one, (2k� 2�2l� 2) will either be
the (i+1)st approximant if ai+1=1, or, if ai+1>1, the first non-approxi-
mant (compatible with |d� |�2=~ ) between (2k� 1 �2l� 1) and the (i+1)st
approximant or the (i+1)st approximant itself. In either case, d� 2 has
the opposite sign of d� 1 . This implies that one could have, depending on d� 1

and d� 2 ,

S 1
& _ S 2

+=S if d� 1<0 (33)

or

S 1
+ _ S 2

&=S if d� 1>0 (34)

This will occur whenever |d� 1&d� 2 |�2=~ . R contains then only two elements:
R=[(2k� 1 �2l� 1), (2k� 2 �2l� 2)]. If this happens not to be the case then one has
to consider a third recurrence time fraction, whose numerator and
denominator are, respectively, larger than 2k� 2 and 2l� 2 . The smallest
possible such fraction is the next fraction on the branch after 2k� 2�2l� 2 ,
which is necessarily the Farey-sum of 2k� 1 �2l� 1 , and 2k� 2 �2l� 2 . This follows
from the fact that all members of the branch are the result of the Farey
summation of the previous member of the branch and the approximant
immediately preceding this member, which is automatically the case for
(2k� 3 �2l� 3). One has therefore

2k� 3

2l� 3
=

2k� 1+2k� 2

2l� 1+2l� 2
(35)

and

d� 3=d� 1+d� 2 (36)
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which, knowing that d� 1 and d� 2 have opposite signs, automatically implies
that |d� 3 |�2=~ . Defining

S (3)=(&=~ &(d� 1+d� 2), =~ ) if (d� 1+d� 2)<0 (37)

S (3)=(&=~ , =~ &(d� 1+d� 2)) if (d� 1+d� 2)>0 (38)

one finds

S (1)
� _ S (2)

\ _ S (3)=S (39)

implying that R contains three and only three elements, R=[(2k� 1 �2l� 1),
(2k� 2 �2l� 2), ((2k� 1+2k� 2 �(2l� 1+2l� 2))]. Note that these recurrence times are
then necessarily relatively prime, as they all belong to the same Farey
branch. We have thus proved quite directly that at least two recurrence
times appear and that three recurrence times are enough for a uniform
dynamics on a T 2 torus.

We turn now to numerical investigations of the solutions of inequality
(11). We find the mean recurrence time to be in excellent agreement with
expression (9). The specific values of the discrete recurrence times are
found to be strongly dependent on the precise set of parameter values and
undergo abrupt transitions toward increasing values when = � 0. Figure 3
illustrates this phenomenon for a particular value of :. It is clearly seen
that while the first (the smallest) recurrence time remains constant, the
second and third recurrence times can only increase by the value of the first

Fig. 3. Values of 2l separating two successive solutions of Eq. (11) as a function of the cell
half-size =. Parameter values |1=1, |2=1.378264538947351816 . . ., and cell size resolution
2==10&5.
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recurrence time, and that when this one changes it takes the value of the
second one just before the transition, while the second one takes the value
of the third one just before the transition.

The following subsections will provide the necessary tools to under-
stand in detail, and reproduce, the rich behavior observed.

2.2. Cell Size Dependence of Recurrence Times

Suppose that one has fixed one frequency set |1 , |2 and some cell size
and knows the resulting (2k� 1�2l� 1), (2k� 2�2l� 2), (2k� 3 �2l� 3). In this section we
show how, on this basis, one may determine (T ) , its higher moments, the
succession of the two or three recurrence times (that is, their order of
appearance) thereby generating all the solutions of Eq. (11) for all cell sizes
smaller than the original one. We introduce for this purpose the ``distance
cone,'' a construct which permits us to determine what the recurrence times
are and how they vary with =.

The distance cone is defined as the part of the half-plane (=, d� )
delimited by the lines d� =2=~ and d� =&2=~ , as illustrated in Fig. 4. Plotting
the horizontal lines d� =d� 1 , d� =d� 2 , and d� =d� 3 inside the cone, one can then
determine how the recurrence times will evolve as = � 0. To see this, let us
start from some =0 (in the concrete case considered in the figure, =0=0.1).
As = decreases, one of the lines d� =d� 1 or d� =d� 2 (e.g., the one corresponding
to the second recurrence time, marked as 2 in the figure) will leave the
cone. This corresponds precisely to the value of = for which |d� 1 |=2=~ (or
|d� 2 |=2=~ , as is the case in the figure). The associated recurrence time will

Fig. 4. Distance cone for :=1�1.378264538947351816 . . . . The numbers 1, 2, 3 are associated
to the distances d� 1 , d� 2 , d� 3 related to the first, second, and third recurrence times.
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then disappear, allowing for only two recurrence times at the transition
(the two remaining ones). These become the first and second recurrence
time, and because one always has d� 3=d� 1+d� 2 , it is clear that |d� 1&d� 2 |=2=~
with the new first and second recurrence times at the transition point. This
means that past this transition point, as = keeps decreasing, one finds
|d� 1&d� 2 |>2=~ , implying the immediate appearance of a third recurrence
time. Generically one therefore has three recurrence times on the parameter
space =, whatever : � Q is.

Proceeding in this way, one may determine entirely what the
recurrence times are and how they vary for all =�=0 : whenever a horizon-
tal line leaves the cone a new one appears whose ordinate is the sum of
ordinates of the two remaining lines, the associated recurrence time being
the sum of the two remaining ones.

We now derive the explicit dependence of recurrence times moments
on the elements of the set R. Since dn � Q \n>0 and dn{dm \m, n>0
(m{n), setting

D=[dn]�
1 (40)

one has

D=[&=~ , =~ ]�Q (41)

Using the uniformity of the distribution of [dn]�
1 on [&=~ , =~ ]�Q and the

results on the distance cone one may calculate the mean recurrence time
and its higher moments for all =�=0 . To this end, we introduce

D1=S (1)
\

D2=S (2)
� �S (1)

\ (42)

D3=S (3)�(S (1)
\ _ S (2)

� )

and

f1=+(D1)�2=~

f2=+(D2)�2=~ (43)

f3=+(D3)�2=~

where +(Di) is the invariant measure of D i . Neglecting finite size effects,
one has then for (T ) and its standard deviation _

(T ) =( f1 2k� 1+ f2 2k� 2+ f3 2k� 3)
2?
|1

(44)

_=�\2?
|1+

2

( f1 2k� 1
2+ f2 2k� 2

2+ f3 2k� 3
2)&(T ) 2 (45)
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Higher moments can be expressed in a similar way. These expressions are
found to be in excellent agreement with the results of numerical
experiments. Note that in the present study we chose square cells of side 2=
for mathematical convenience. Our analysis shows that what really matters
is the cross-section of the cell through the flow on the torus: the shape itself
is not important, as long as the size remains small.

Actually, one can cast the original dynamics in a form that allows for
a full deterministic description of the succession of the recurrence times,
which is of central importance in terms of prediction skills. Indeed, one
may express the general solution of Eq. (11) as:

k(n)=n1(n) 2k� 1+n2(n) 2k� 2
(46)

l(n)=n1(n) 2l� 1+n2(n) 2l� 2

The positive integers n1(n), n2(n) are determined in terms of the solutions
of the following piecewise linear map:

xn+d� 1 if xn # D1

xn+1= f (xn)={xn+d� 2 if xn # D2 (47)

xn+d� 3 if xn # D3

where xn # [&=~ , =~ ] and the initial condition x0 equals the distance
d� i=2k� i&2l� i: associated to the smallest recurrence time (2k� i , 2l� i) satis-
fying |d� |�=~ (this condition may be checked to be automatically fulfilled for
at least one recurrence time, as it obviously should). Specifically,

\n1(n)
n2(n)+=\n1(1)

n2(1)++ :
n

j=2
\!j

' j+ (48)

where

\n1(1)
n2(1)+=\1

0+ if |d� 1 |�=~ (49)

\n1(1)
n2(1)+=\0

1+ if |d� 1 |>=~ , |d� 2 |�=~ (50)

\n1(1)
n2(1)+=\1

1+ if |d� 1 |>=~ , |d� 2 |>=~ (51)
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and

\!j

'j +=\1
0+ if xj # D1 (52)

\!j

'j +=\0
1+ if xj # D2 (53)

\!j

'j +=\1
1+ if xj # D3 (54)

This procedure amounts, therefore, to casting recurrence in the form of a
symbolic dynamics involving the three ``states'' D1 , D2 and D3 . It is
automatically checked that this map is also an interval exchange transfor-
mation, and is simply map (1) restricted to the interval [0, =~ ] _ [1&=~ , 1],
showing the ergodic properties discussed in ref. 14 and references therein.

The following observations also follow from the properties of the map
of Eq. (47). First, the temporal sequence of the 2 or 3 different recurrence
times is itself quasi-periodic. Indeed, as this map has a uniform invariant
density and slopes everywhere equal to one, no periodic or chaotic motion
can occur. Its dynamics must thus be quasi-periodic, implying a similar
property for its symbolic dynamics as well. Second, there will always be
some forbidden transitions in the temporal succession of the recurrence
times, whatever the number of recurrence times is. An explicit 2 V 2 or 3 V 3
transition probability matrix W between the different recurrence times may
be constructed, given the values of the D1 , D2(, D3) state boundaries. The
elements of this matrix are given by the following expression:

Wij=
+( f (Di) & Dj)

+(Di)
(55)

where +(Di) is the measure of the state Di and f is given by (47), with the
property

:
2(3)

j=1

Wij=1 \i=1, 2(, 3) (56)

At the specific values of = where only 2 recurrence times are allowed (when
|d� 1&d� 2 |=2=~ ), it is clear that if |d� 1(2) |�=~ then W11=0 (W22=0), implying
that the transitions 2k� 1 W 2k� 1 (2k� 2 W 2k� 2) are forbidden. Analoguous
expressions for the determination of forbidden transitions may be derived
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when 3 recurrence times are present. As an example, for the parameter set
(:=1�- 13, ==0.0096), for which one has three recurrence times, W has
the form

0 1 0

W=\0.38045 0.28666 0.33288+ (57)

0 1 0

showing that the transitions 2k� 1 W 2k� 1 , 2k� 1 W 2k� 3 , and 2k� 3 W 2k� 3 are in
this case forbidden.

The construction of higher-order matrices (Wi, j,..., n), i, j,..., n�3
whose elements represent the probability of observing a sequence 2k� i ,
2k� j ,..., 2k� n of recurrence times is of a more complicated nature as it implies
the study of multiple projection of (sub-)intervals of D1 , D2 and D3 under
map (47). The knowledge of such probabilities is essential though in the
understanding of the structure of the correlation function of the observed
recurrence times sequence. Such correlations are strongly dependent on the
respective sizes of D1 , D2 , D3 and thus on : and =.

2.3. Branch Structure Dependence of Recurrence Times

The direct computation of the recurrence times 2k� (2l� ) from Eq. (11)
for all values of = � 0 reveals that the set of all observed 2k� �2l� fills in (com-
pletely), as it should, the set [ pn �qn] of the Farey branch converging to :,
that is, all 2k� �2l� belong to [ pn �qn]. The particular fractions of recurrence
times for a given set of parameter values need not be neighbors in the set
[ pn �qn], as this depends on the structure of the branch.

The specific structure of the branch may be quantified by the com-
plexity of the corresponding sequence [aj]: since the elements aj represent
the number, plus one, of non approximant members of the branch between
the j th and ( j&1)th approximant, a ``complex'' sequence of numbers
means a complex branch structure (the branch winds in a complex way),
and a regular, ``simple'' sequence means a simple branch structure, as
for example for :=- 5&1�2 and :=1�- 2 for which the continued
fraction expansions are, respectively, [1, 1, 1,..., 1,...] and [1, 2, 2,..., 2,...]
(periodic structures). We therefore expect that the structure of the branch
should have profound consequences on the underlying phenomenon of
recurrence and, in particular, on the behavior of the standard deviation _
of the recurrence times since a complex branch structure may be respon-
sible for a considerable dispersion of recurrence times. For instance, if
2k� 1 �2l� 1 is the j th approximant, then 2k� 2 �2l� 2 may be up to the ( j+1)th
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approximant, in which case the number of elements between 2k� 1 �2l� 1 and
2k� 2 �2l� 2 is aj+1&1. Depending on where 2k� 1�2l� 1 is on the branch (that is,
on the value of =), aj+1 may be a large number, implying 2k� 1<<2k� 2 ,
which in turn may entail a great standard deviation of recurrence times,
assuming that one has +(D1)&+(D2).

In this respect one sees from relation (30), that irrationals having a
regular continued fraction expansion [aj] where aj are large integers have
the property to be particularly well approximated by their approximants,
that is the convergence toward : is fast, while an expansion with small
integers entails a slow convergence. This means in turn that irrationals that
are not well approximated by rationals (called Diophantine numbers) are
expected, given any =, to generate a lower standard deviation than irra-
tionals well approximated by rationals. As an explicit illustration, consider
the least well approximated number, the (reciprocal of ) Golden Mean:
:=(- 5&1)�2. Its branch structure being very simple (all members of the
branch are approximants), one has that for all fixed value of = the
recurrence times fractions are neighbors on the branch and thus generate
a low standard deviation.

We next investigate the dependence of the recurrence times and the
relative standard deviation on : at fixed value of =. Figure 5 depicts the
result concerning the recurrence times. In order to understand the origin of
the structures appearing on the figure, let us consider a certain fraction
p1 �q1 and inquire, for what values of : will this be the first recurrence time
fraction. Clearly, for any given =, p1 �q1 will be the first recurrence time for
all : # [(( p1&2=~ )�q1), (( p1+2=~ )�q1)] if there are no other lower-level frac-
tions p*n �q*n (that is, p*n and q*n are smaller integers than p1 and q1) such that

_p*n&2=~
q*n

,
p*n+2=~

q*n && _p1&2=~
q1

,
p1+2=~

q1 &{< (58)

Otherwise, p1 �q1 would be the first recurrence time fraction for all : (#R!)
such that

: # _ p1&2=~
q1

,
p1+2=~

q1 &<\.
n _ p*n&2=~

q*n
,

p*n+2=~
q*n &+ (59)

The figure shows that the lower the level of p1 �q1 the greater the range of
: values around p1 �q1 that will satisfy

} p1

q1

&: }�2=~
q1

(60)
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Fig. 5. Typical dependence of the two or three recurrence times (2l� 1, 2, 3) on :, for different
values of = (|1=1, 2|2=10&6).

Furthermore, lowering the value of = decreases the range. This may be
understood through the following observation: p1�q1 being an approxi-
mant, one has (cf. Eq. (30))

} p1

q1

&: }< 1
q1 q2

(61)

where p2 �q2 is the next approximant after p1 �q1 . This means that q2 may
increase substantially as : � ( p1�q1), and this increase will be more
pronounced if q1 is small. One thus finds that the lower the level of p1 �q1 ,
the higher the level of p2 �q2 (and p3 �q3) as : � ( p1 �q1) and the greater the
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range of :-values where p1 �q1 is the first recurrence time fraction. This
phenomenon generates the great number of ``trumpet-like'' structures of
varying height observed on Fig. 5.

The above spreading of the recurrence times is naturally reflected by
the behavior of their (relative) standard deviation, as illustrated on Fig. 6.
Here, the trumpet-like structures are more evident. They become denser
with decreasing value of = since in this case the range of :-values for the
first recurrence time decreases, giving rise to wide dispersion of first
recurrence times. The point to be stressed is that a slight variation of cell
size and�or frequency may dramatically change the recurrence times them-
selves and thus the fluctuations around the mean recurrence time.

Fig. 6. Dependence of the relative standard deviation on :, for different values of = and the
parameter values of Fig. 5.
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2.4. Generalization to n-Dimensional Tori

In this Section we comment on the extension of the above results to
uniform quasi-periodic motion involving n (n>2) irrationally related fre-
quencies |i , i=1,..., n. Choosing a phase space cell in the form of a hyper-
cube of side 2=, one can extend straightforwardly Eq. (5). For instance, for
n=3, one thus obtains for small = the explicit form

(T ) &
(2?)3

(2=)2 (|1+|2+|3)
(62)

As before, the numerical simulation is in excellent agreement with the
above value and reveals, furthermore, the existence of a limited number of
distinct recurrence times. Unfortunately, the higher dimensionality seems to
bring out new features that do not allow us to analyze the problem in full
detail.

Let us illustrate this in the case n=3. Performing the same algebra
that led to Eq. (11), now with three frequencies |1 , |2 , |3 , the Diophan-
tine inequalities to be solved are

|k&l:1 |�=~ 1 (63)

|k&m:2 |�=~ 2 (64)

|l&m:3 |�=~ 3 (65)

where k, l, m # N0 , :1=|1 �|2 , :2=|1 �|3 , :3=|2 �|3 such that 0<:i<1,
and =~ i=(=�2?)(1+:i). This new set of inequalities may be interpreted
as a two-dimensional simultaneous ``super''-approximation problem for the
integer k, that is, a two-dimensional simultaneous approximation
problem(18) for k (Eqs. (63) and (64)) with an additional constraint
imposed on l and m (Eq. (65)). A similar problem will arise for all n>2
where (63)�(65) will be replaced by n(n&1)�2 equations.

The set of inequalities (63)�(65) may be reduced, considering each
inequality separately and their associated symbolic dynamics, to a set of
Diophantine expressions, each one similar to (46). One is thus led to solve
a set of three Diophantine expressions whose coefficients are given by three
different symbolic dynamics. It therefore seems impossible to extract in a
straightforward way as enlightening results as in a two-dimensional case.
The number of distinct recurrence times observed depends on :i and =, and
is usually around 8 or 9 (and up to 15 or more). On the other hand, the
constraints imposed on k (l, m) by Eqs. (63)�(65) are too strong to allow
for all the recurrence times fractions 2k� i �2l� i ((2k� i �2m� i), (2l� i �2m� i)) to be
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exclusively part of the Farey branch converging to :1 (:2 , :3): the specific
values of 2k� i �2l� i are linear Farey-combinations of the 2k� $1 �2l� $1 and
2k� $2 �2l� $2 that would be observed if Eqs. (63)�(65) were solved indepen-
dently, those combinations being thus in general such that they do not
belong to the branch converging to :1 . Figure 7 illustrates the evolution of
the recurrence times and their relative standard deviation with = for |1=1,
|2=- 2, |3=- 3. Figures 8 and 9 illustrate the behavior of these quan-
tities as |1 , |2 , = are kept fixed and |3 is varied. The evolution of the
recurrence times presents embedded trumpet-like structures of a more com-
plex nature than in the two-dimensional case, reflecting the new features
brought by the higher dimensionality. Yet, despite this complex embedding
of trumpet-like structures, the evolution of the relative standard deviation
is quite similar to the two-dimensional case, see Fig. 6.

In short, high-dimensional uniform quasi-periodic motion also dis-
plays great sensitivity to variations of parameters as far as fluctuations
around the mean recurrence time are concerned.

Fig. 7. Recurrence times (a) and relative standard deviation (b) as = varies, as obtained from
the first 10000 solutions of Eqs. (63)�(65) (|1=1, |2=21�2, |3=31�2, 2==10&4).
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Fig. 8. Typical dependence of the recurrence times (2l� n , n=1,...) on :1, 2, 3 , for different
values of = as |3 varies (|1=1, |2=21�2, 2|3=10&5).

Fig. 9. Dependence of the relative standard deviation on |3 for different values of = and
parameter values of Fig. 8.
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3. NON-UNIFORM QUASI-PERIODIC MOTION

It is well known that nonlinearities generally induce non-uniformities
in the spreading of the trajectories and in the invariant density of a
dynamical system in the underlying phase space. As a consequence, mean
recurrence times may be expected to be depending on the position of the
corresponding phase-space cell. One may also expect different discrete
recurrence times and different fluctuations around local mean recurrence
times. In this Section we outline the main steps toward the extension of the
recurrence times properties of uniform quasi-periodic motion to non-uniform
quasi-periodic motion. We will limit ourselves to the two-dimensional case as
it will be clear further that the generalization to higher-dimensional tori goes
along the same lines as in the uniform case. The persistence of two or three
recurrence times in two-dimensional non-uniform quasi-periodic motion was
anticipated by Mayer.(4)

3.1. General Formulation

As mentioned in the Introduction, non-uniform quasi-periodic motion
reduces on a Poincare� surface of section to a nonlinear twist map f (xn), of
the form of Eq. (2). Let us suppose f : T 1 � T 1 be an orientation preserving
circle homeomorphism, that is, f is continuous with continuous inverse and
preserves the order of points on the circle T 1. We define the rotation
number, or winding number, of f as

\= lim
n � �

xn&x0

n
(66)

with xn computed without a mod 1 constraint in f, that is, from a lift of f.
When limit (66) exists, it measures the average rotation per iterate

of f. It is independent of x0 and gives valuable information concerning the
kind of dynamics: if \ is rational, say \= p�q where p and q are relatively
prime integers, then the motion on the two-torus is periodic-phase locked
(with period q), and if \ is irrational then the motion is quasi-periodic. The
inverse is also true.

Suppose now f, g: T 1 � T 1 are orientation preserving circle homeo-
morphisms. f and g are called conjugate if there exists a homeomorphism
h: T 1 � T 1 such that h b f =g b h. The following results can then be estab-
lished (for a review see, e.g., Walsh(19)):

�� If f : T 1 � T 1 is a C1-diffeomorphism with \=: � Q, and if f $ has
bounded variation, then f is conjugate to the rigid rotation r: : x � x+:
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mod 1 (Denjoy's Theorem). The rotation number \ is invariant under a
continuous change of variables.

�� If f, g: T 1 � T 1 are conjugate orientation preserving homeo-
morphism, then they have the same rotation number.

Consider next N equally sized non-overlapping cells in [0, 1]. The
recurrence of the phase-space trajectory into a given phase-space cell may
be expressed by the following inequality:

|k&(xn&x0)|�= (67)

or

(xn&x0) mod 1 # [0, =] _ [1&=, 1] (68)

where ==1�2N, x0 is the center point of the chosen cell, xn is the nth image
of x0 by the lift of map f, and k is an integer.

The values of n for which Eqs. (67) or (68) are satisfied are the passage
times of the phase-space trajectory into the cell centered around x0 on the
Poincare� section, normalized by the time between two successive crossings.
The discrete recurrence times in that cell are then the differences between
successive values of n, solutions of Eqs. (67) or (68).

Now, the existence of a conjugacy h(x) to a pure irrational rotation

xn+1=xn+\ mod 1 (69)

guarantees that there exists a continuous change of variable u(x) that
brings the non-uniform invariant density \nu

s (x) of f to a uniform invariant
density \u

s (x). Writing

\nu
s (x)=\nu

s (u(x))
du
dx

(70)

=\u
s(x)

du
dx

(71)

where \u
s (x)=1 \x, one finds

u(x)=|
x

0
\nu

s ( y) dy (72)
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On the other hand, the conjugacy will deform the cells of the partition
differently, depending on their position. To account for this we rewrite
Eq. (67) in the form

|k&(xn&x0)|�
2x
2

=
(x0+=)&(x0&=)

2
(73)

Under the conjugacy h,

xn&x0 � n\ (74)

and

(x0+=)&(x0&=)
2

�
1
2 |

x0+=

x0&=
\nu

s ( y) dy=
+(C )

2
(75)

where +(C ) is the invariant measure of the cell C around x0 . Equation (67)
therefore becomes

|k&n\|�
+(C )

2
(76)

and we showed in the first part of this paper how the recurrence times
behavior is determined by the properties of convergence of the continued
fraction representation of the irrational \.

The conjugacy allows us then to reduce the original problem involving
non-uniform dynamics to a problem involving uniform, but phase-space
cell depending, dynamics for which the previous results may be applied.

It is interesting to note that what really matters in this respect is the
invariant measure of the cell and the rotation number.

3.2. Recurrence Properties of the Sine Circle Map

As a prototype model of non-uniform quasi-periodic motion, we
investigate the recurrence times properties of the well-known sine circle
map(20)

xn+1=xn+:&
;
2?

sin(2?xn) mod 1 (77)

which has been widely used as a representative model of the return map in
a Poincare� section in a variety of problems involving periodically forced
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strongly damped nonlinear oscillators, strobed at multiple periods of the
external frequency. Here xn is the phase of the forced oscillator, : is the
ratio of the external forcing frequency and the frequency of the unforced
oscillator, and ; measures the strength of the coupling. Map (77) thus con-
stitutes a physically relevant model on which valuable information concer-
ning recurrence times properties can be extracted.

One of the characteristic properties of the sine circle map is the emer-
gence and widening of resonance regions corresponding to phase-locking
(the so-called Arnold tongues) in the parameter plane (:, ;) as the coupling
strength ; increases. When ;>1 the map becomes non-invertible and the
tongues start overlapping with each other, eventually leading to chaos.
Between these phase-locked regions lie regions of quasi-periodic motion.

We now perform a numerical study of the recurrence behavior of the
sine circle map in quasi-periodic regime.

The variables to be considered are: the first and second moment of the
recurrence times as well as the values and number of the different
recurrence times, as a function of the cell position and cell size. This latter
dependence is a physically important aspect in prediction since the cell size
represents the coarseness of a data set.

The mean recurrence time in each cell has been evaluated directly by
monitoring the successive discrete recurrence times and then compared to
the inverse of the cell's invariant measure (which was also numerically
evaluated). Not surprisingly, an excellent agreement is found.

Now, as the non-uniformity of the invariant density typically implies
a great variation among the invariant measures of the different cells, the
recurrence times in each cell are expected to be highly dependent on the
cell's position. Indeed, the variability of the cells's measures allows, in terms
of recurrence times, the probing of different regions of the Farey branch
converging to the rotation number. As typically no two cells have exactly
the same invariant measure, they all experience different discrete recurrence
times, or the same ones but in different proportions. As a result, the
(relative) second moment of the recurrence times (which constitutes a
measure of the spatial ``degree of predictability'') may also be expected to
be a highly fluctuating quantity when spanning the phase-space partition.
This is best understood by realizing that the set of values [+(Ci)�2] i=1 } } } N

in the interval

I=, N=\ min
i=1 } } } N

+(Ci)
2

, max
i=1 } } } N

+(Ci)
2 + (78)

actually defines a pointwise interval of =-values. Clearly, if in this =-interval
the behavior of the relative standard deviation associated to a uniform
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dynamics with rotation number \ when the cell size is varied (as in Figs. 7b
and 8b) displays substantial fluctuations, then there will be substantial
spatial fluctuations of the relative variance in the non-uniform case. It
should be obvious from Eqs. (45) and (46) that any variation of the cell
size or, equivalently, measure, will necessarily imply a variation in the
(relative) variance. The amplitude of these variations depends on the
branch local complexity (structure), reflected by the coefficients appearing
in the continued fraction expansion of the rotation number (note that there
exists an algorithm to determine the continued fraction expansion of the
rotation number directly from the dynamics of the circle map(21)).

Now, a randomly picked irrational number may be expected to have
any degree of local complexity in its continued fraction, implying in turn
that an infinite variety of behaviors in terms of recurrence times properties
is to be expected in the set of all irrationals. The dependence of this spatial
variability on the refinement of the partition is as follows: by increasing
(decreasing) N, the =-window generally shrinks (widens) but at the same
time moves to lower (higher) values of =, where the relative variance fluc-
tuates faster and faster (slower and slower). All in all, this means that the
relative variance will remain a spatially fluctuating quantity whatever the
refinement of the partition is.

Figure 10 shows the invariant density of the variable xn in (77) for the
parameter values :=0.73, ;=0.85. Figures 11 and 12 illustrate how, for
the same parameter values but for different N 's, the discrete recurrence
times depend, spatially, on the measure of the cells (that is, on the
invariant density), as well as how their respective fractions vary. It is clear
that the discrete recurrence times undergo sharp transitions as the measure

Fig. 10. Invariant density of the variable xn in the sine circle map for parameter values
(:=0.73, ;=0.85).
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Fig. 11. Spatial distribution of recurrence times (a) and respective fractions for N=100 ((b):
first, (c): second, (d): third), for parameter values (:=0.73, ;=0.85).

Fig. 12. Spatial distribution of recurrence times (a) and respective fractions for N=1000
((b): first, (c): second, (d): third), for parameter values (:=0.73, ;=0.85).
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Fig. 13. Evolution of the spatial distribution of relative variance for different numbers N of
cells and for the same parameter values as in Fig. 11.

of the cells reaches some specific value, with a pointwise continuous evolu-
tion of the respective fractions between two transitions (not shown), a
phenomenon that is clearly reminiscent of what is observed in uniform
quasi-periodic motion (uniform invariant density) when the cell size is
varied.

Figure 13 illustrates how the relative variance varies for different N 's,
for the same parameter values. This quantity is indeed found to be highly
fluctuating, both in space and as a function of the partition refinement, in
agreement with the arguments advanced above. This is an important point
to stress as it shows that already with rather simple dynamical systems
(here, nonuniform quasi-periodic motion) the prediction of a recurrence
may be rather poor and strongly dependent on the position and size of the
partition cell.

4. CONCLUSIONS

In this paper we studied the recurrence times properties of the simplest
form of aperiodic dynamics, the quasi-periodic motion, and their
dependence on the underlying parameters. Despite its simplicity, the
phenomenon of recurrence of the trajectory in a phase-space cell on the
torus turned out to be quite intricate and to display a rich behavior. We
derived expressions and tools that enabled us to fully understand the
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recurrence phenomenon in the two-dimensional case. These allowed us to
determine, semi-analytically, the discrete recurrence times and their tem-
poral succession, the mean recurrence time and the higher moments, as
well as how these variables evolve in the parameter plane (=, :). We
stressed the role of the continued fraction expansion properties of the irra-
tionals on the variability of the recurrence times. We investigated higher-
dimensional quasi-periodic motions and found much more complex
behaviors that also reveal a great variability in the recurrence dynamics.
Unfortunately, a (semi-)analytical treatment doesn't seem to be possible in
this case.

We showed that it is possible to get quantitative information about the
recurrence time behavior of nonlinear systems evolving on two-dimensional
tori, by casting the problem to the circle map. Evidence was produced to
show that their finite-time recurrence behavior may be highly dependent on
the phase-space position, the parameter values (which determine the rota-
tion number) and the resolution of the partition. The ``degree of predic-
tability'' (measured by the relative standard deviation) was related to the
behavior of the Farey branch converging to the irrational rotation number,
and its dependence on the cell size and position was analyzed in detail.

A major difficulty arises when higher-dimensional tori are considered,
either because the forcing is higher-dimensional or because several non-
linear oscillators are coupled and possibly forced. One is then typically left
with coupled circle maps, for which it is generally not possible to find a
conjugacy to a pure irrational rotation although the rotation number
might exist and be well defined. The above analysis then does not carry
through. Of great interest would be the case of systems generating deter-
ministic chaos where the rotation number opens up to a rotation interval
or, more generally, in higher dimensions, to a rotation set(22, 23) and for
which recurrence times can be expected to be statistically distributed in a
much wider range, in a way closer to what happens in stochastic processes.
It is not unrealistic to expect such chaotic regimes to display recurrence
time properties reminiscent to what is found in quasi-periodic regime. Quasi-
periodically forced (coupled) nonlinear oscillators are also of great interest
as they have been shown to display strange non chaotic behavior.(24�27) The
implications of strangeness with and without chaoticity on recurrence times
properties are currently under investigation.
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